Abstract List

Abstract ID Status

SNM- 68 (Oral)
NURRIZA INDAH CAHYANI
(Universitas Mataram)

Integrasi GeoGebra Dalam Pembelajaran Matematika Terhadap Pemahaman Konsep Matematis Siswa

Penelitian ini dilatarbelakangi oleh rendahnya pemahaman konsep matematis siswa yang disebabkan oleh minimnya penggunaan media pembelajaran inovatif. Tujuan penelitian ini adalah untuk mengetahui pengaruh integrasi GeoGebra terhadap pemahaman konsep matematis siswa pada materi dimensi tiga di kelas XI SMAN 1 Pringgasela tahun ajaran 2024/2025. Penelitian ini menggunakan pendekatan Mixed Method dengan desain concurrent embedded yang lebih menekankan pada metode kuantitatif. Sampel penelitian terdiri dari dua kelas, yaitu kelas eksperimen yang menggunakan model Problem Based Learning berbantuan GeoGebra dan kelas kontrol yang menggunakan pembelajaran konvensional. Hasil posttest menunjukkan bahwa rata-rata nilai kelas eksperimen sebesar 82,71, sedangkan kelas kontrol sebesar 53,94. Uji t menunjukkan nilai signifikansi (2-tailed) sebesar 0,000 yang ≤ 0,05, sehingga terdapat perbedaan yang signifikan antara kedua kelas. Selain itu, nilai effect size sebesar 2,32 termasuk kategori besar, yang menunjukkan bahwa integrasi GeoGebra memberikan pengaruh signifikan terhadap peningkatan pemahaman konsep matematis siswa. Dengan demikian, penggunaan GeoGebra terbukti efektif dalam meningkatkan kualitas pembelajaran matematika, khususnya pada materi dimensi tiga.

SNM- ()
Mohammad Farhan
(Institut Teknologi Bandung)


SNM- ()
Dita Sulistina Ginanti
(Universitas Mataram)


SNM- ()
ISNA FEBRIANI
(Universitas Mataram )


SNM- ()
Yasmin Mumtadz
(Universitas Mataram)


SNM- ()
ERNI ERNAWATI
(SMKN 3 MATARAM)


SNM- 50 (Participant)
Wais Al Qorni
(Universitas Mataram)


SNM- ()
Siska Wulandari
(Universitas Mataram )


SNM- ()
Abdul Majid
(Universitas Mataram)


SNM- 51 (Oral)
Ferdi Ferdi
(Institut Teknologi Bandung)

Quadratic Embedding of Multi-Vertex Amalgamation Product

Let graph G be a simple, finite, connected, and undirected graph. A graph G is said to belong to the QE class if admit a quadratic embedding in Hilbert space, or equivalently, if the quadratic embedding constant QEC(G) is non positive. The study of these QECs was motivated by Schoenberg’s classical work on the quadratic embedding of metric space. In this article, we can prove that amalgamation multi-vertex product admit quadratic embedding and we provide lower bound for this operation by using the isometrically embedded subgraph property, an isometrically embedded subgraph is a subgraph of a graph G in which the distance between any two vertices x and y is equal to their distance in G. Moreover, we also prove unicylic, bicyclic, and n-cylic graph admit to quadratic embedding. Furthermore, we provide some graphs whose QEC is zero, such as sunrise graph, tadpole graph, dumbbell graph, and generalized friendship graph.