Abstract List |
||||
Abstract ID | Status | |||
SNM-37 (Oral) Muhammad Rafif Fajri |
On Ramsey (2K_2,S_n)-Minimal Graphs of the Smallest OrderThe notation F → (G,H) means that for every red-blue edge coloring of F, the red subgraph contains a copy of G or the blue subgraph contains a copy of H. Let ℛ(G,H) denote the set of all graphs F such that F → (G,H), and for every edge e ∈ E(F), it holds that F − e ↛ (G,H). The minimum order of graphs in ℛ(G,H) is denoted by R ̂(G,H). A star graph Sₙ is defined as the join of K₁ and (K_n ) ̅, where K̅ₙ is the edgeless graph on n vertices. In this talk, we determine all graphs in R ̂(2K₂, Sₙ) for every n ≥ 3. |
|||
SNM-38 (Oral) Intan Sherlin |
On the Ramsey Number for Trees versus FansThe Ramsey number R(G, H) is the smallest number of vertices r such that any graph F with r vertices either contains G or its complement contains H. In this presentation, we consider R(G,H) where G is a tree Tn of order n, and H is a fan F1,m=K1+Pm. Burr (1981) has provided the lower bound of R(Tn, F1,m). When m ≥ 2n-1, we give the better lower bound for R(Tn, F1,m). We also consider the Ramsey number of Tn versus F1,m for certain values of m when Tn is a tree with maximum degree n-5, n-4, or n-3. In particular, we determine R(Tn, F1,8). when Tn is a tree with maximum degree n-4 or n-5. We also proved that for a tree Tn with maximum degree n-3, the upper bound of R(Tn, F1,m) is R(Sn(1,1),F1,m). Moreover, let x be a vertex with the maximum degree in Tn, and let Tn' be a tree that is constructed from Tn by deleting a pendant edge xu of Tn then connecting u to a pendant vertex of Tn. We show that R(Tn',F1,m) ≤ R(Tn, F1,m) for certain classes of Tn and Tn'. |
|||
SNM-39 (Oral) Deni Hamdani |
Conceptual metaphor of isomorphisms as bijective homomorphismsHomomorphism and isomorphism groups are essential topics in abstract algebra courses, but studies that demand an understanding of the relationship between these two concepts are still limited. By examining 57 undergraduate student responses (homomorphism assignments), this study explores how conceptual metaphors come into question when faced with problems involving isomorphisms. Starting from how the view that “isomorphism is a bijective homomorphism” can help or complicate students when constructing proofs for isomorphism problems, this study then examines the underlying rationale behind such a perspective. The findings highlight the importance of knowing whether a mapping can be considered a homomorphism or not (utilizing intuition) based on formal definitions and corresponding properties, followed by the conceptual benefit of linking isomorphism and homomorphism into a conceptual metaphor (sameness) as the basis for extending understanding. The implications of understanding homomorphism and isomorphism encourage dialogue on the view of an isomorphism as a bijective homomorphism (an injective and surjective homomorphism), as well as the need to examine further the knowledge content involved. |
|||
SNM-41 (Oral) Zuhratul Hilmi Aliyawati |
PENERAPAN PBL UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS DAN ANALITIS SISWA SMP PADA KURIKULUM NASIONALPenelitian ini bertujuan untuk meningkatkan kemampuan berpikir kritis dan analitis siswa melalui penerapan model Problem Based Learning (PBL) dalam proses pembelajaran matematika, khususnya dalam konteks Kurikulum Merdeka. Penelitian dilakukan di Kelas VIII B MTs NW Aik Bukak dengan menggunakan pendekatan Penelitian Tindakan Kelas (PTK) yang dilaksanakan dalam dua siklus dan melibatkan 24 siswa. Data dikumpulkan melalui observasi, uji tertulis (pre-test dan post-test), serta dokumentasi. Hasil penelitian menunjukkan peningkatan yang signifikan dalam kemampuan berpikir kritis dan analitis siswa, dengan nilai rata-rata berpikir kritis siklus I sebesar 57,21 menjadi 77,21 pada siklus II, nilai rata-rata kemampuan berpikir analitis siklus I sebesar 63,5 menjadi 81,35 pada siklus II dengan ketuntasan klasikal mencapai 91,66%. Penelitian ini menunjukkan bahwa model PBL dapat menjadi pendekatan pedagogis yang efektif untuk menumbuhkan berpikir kritis dan analitis dalam matematika di bawah kerangka Kurikulum Merdeka. |
|||
SNM-45 (Oral) Ketut Queena Fredlina |
The Dominating Partition Dimension of Burger GraphsDominating Partition Dimension is a parameter in graph theory that combines two important concepts: resolving partition and dominating set. A partition of the vertex set V(G) is called a dominating resolving partition if it satisfies two conditions: each vertex in the graph has a unique distance representation with respect to the partition, and each vertex has a neighbor in at least one different partition class. The minimum number of partition classes in a dominating resolving partition is called the dominating partition dimension of a graph G, denoted by η_p (G). This study aims to determine the value of η_p (G) for the burger graph. A burger graph is a cubic graph constructed from two cycles with additional connecting edges between the cycles defined by a specific permutation. Using a theoretical analysis approach to the structure of the graph, partitions that fulfill both resolving and domination properties are identified. The results of this study are expected to enrich the investigation of the η_p (G) parameter in cubic graphs and contribute to the development of regular network models in graph theory. |
|||
SNM-47 (Oral) SUMAYSA AKHMARAL PUTRI |
PENGARUH PENERAPAN PEMBELAJARAN KOLABORATIF BERBANTUAN AUGMENTED REALITY TERHADAP PEMAHAMAN KONSEP BANGUN RUANG SISWA SMPPenelitian ini bertujuan untuk mengkaji pengaruh signifikan pembelajaran kolaboratif berbasis Augmented Reality terhadap pemahaman konsep bangun ruang siswa kelas VII SMPN 1 Sakra dengan menggunakan teori Van Hiele. Penelitian ini menggunakan metode kuantitatif dengan desain Quasi eksperimen yang melibatkan dua kelompok, yaitu kelompok eksperimen dan kontrol. Instrumen pengumpulan data berupa tes (pretest dan posttest) sebanyak tiga soal terkait materi prisma, serta lembar observasi untuk mengamati pelaksanaan pembelajaran Augmented Reality yang disesuaikan dengan kurikulum. Analisis data mencakup uji normalitas, homogenitas, uji hipotesis, dan N-Gain. Data yang diperoleh tidak memiliki distribusi yang normal dan homogen, sehingga analisis menggunakan uji Mann–Whitney. Hasil penelitian menunjukkan bahwa siswa yang mengikuti pembelajaran kolaboratif berbasis Augmented Reality memiliki pemahaman konsep bangun ruang yang secara signifikan lebih tinggi dibandingkan dengan siswa yang mengikuti pembelajaran konvensional. Uji hipotesis menunjukkan nilai signifikansi 0,000 (p < 0,05), sehingga hipotesis diterima. |
|||
SNM-51 (Oral) Ferdi - |
Quadratic Embedding of Multi-Vertex Amalgamation ProductLet graph G be a simple, finite, connected, and undirected graph. A graph G is said to belong to the QE class if admit a quadratic embedding in Hilbert space, or equivalently, if the quadratic embedding constant QEC(G) is non positive. The study of these QECs was motivated by Schoenberg’s classical work on the quadratic embedding of metric space. In this article, we can prove that amalgamation multi-vertex product admit quadratic embedding and we provide lower bound for this operation by using the isometrically embedded subgraph property, an isometrically embedded subgraph is a subgraph of a graph G in which the distance between any two vertices x and y is equal to their distance in G. Moreover, we also prove unicylic, bicyclic, and n-cylic graph admit to quadratic embedding. Furthermore, we provide some graphs whose QEC is zero, such as sunrise graph, tadpole graph, dumbbell graph, and generalized friendship graph. |
|||
SNM-53 (Oral) Sigit Pancahayani |
Ascending subgraph decomposition of edge amalgamation of triangles and its antimagic labelingLet t and q be positive integers, and G be a simple and finite graph of size q that satisfy \binom{t+1}{2}≤ q<\binom{t+2}{2}. A graph G admits an ascending subgraph decomposition (ASD) if G can be decomposed into t subgraphs H_1, H_2, … , H_t none of which contain isolated vertices. Moreover, each H_i is isomorphic to a proper subgraph of H_(I+1), for 1≤ i≤ t-1. A conjecture that a graph of positive size has an ASD remains open. In this talk, we present the ascending subgraph decomposition of an edge-amalgamation of triangles. Let f:V(G)∪ E(G)→ {1,2,…,|V(G)|+|E(G)|} be a total labeling on G. If the weights of all H_is (1≤ i≤ t) are distinct, then f is called an ASD-antimagic labeling and G is an ASD-antimagic graph. A further conjecture states that every positive-size graph is ASD-antimagic. In this talk, we support the conjecture by presenting ASD-antimagic labelings for an edge-amalgamation of triangles. The construction of the ASD-antimagic labelings of this graph is based on its H-magic labelings. |
|||
SNM-65 (Oral) Setiawati - |
Penentuan Waktu Tanam Tomat yang Optimal di Sembalun Bumbung Berbasis Metode AHP dan TOPSISTomat merupakan komoditas pertanian penting yang banyak dibudidayakan, termasuk di Sembalun Bumbung. Namun, ketidakstabilan harga dan kondisi lingkungan turut memengaruhi hasil panen yang sangat bergantung pada waktu tanam yang dipilih petani. Oleh karena itu, pengambilan keputusan mengenai waktu tanam tomat di Sembalun Bumbung menjadi hal yang penting untuk dilakukan. Penelitian ini bertujuan untuk menentukan waktu tanam tomat yang optimal di Sembalun Bumbung dengan menggunakan kombinasi metode Analytical Hierarchy Process (AHP) dan Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Kriteria yang digunakan meliputi cuaca dan iklim, nutrisi, ketersediaan air, hama dan penyakit, sinar matahari, harga pasar, serta durasi panen. Alternatif waktu tanam yang dianalisis mencakup musim penghujan awal, musim kemarau, dan musim penghujan akhir. Hasil penelitian menunjukkan bahwa alternatif terbaik adalah musim penghujan akhir dengan nilai preferensi sebesar 0,744, diikuti musim kemarau dengan nilai 0,610, dan terakhir musim penghujan awal dengan nilai 0,321. Dengan demikian, waktu tanam tomat yang paling optimal di Sembalun Bumbung adalah musim penghujan akhir. |
|||
SNM-67 (Oral) Syahrul Azmi |
-- |